
Reinforcement Learning from Human Feedback
Basics

Nathan Lambert

13 August 2024

Abstract

Reinforcement learning from human feedback (RLHF) has become an
important technical and storytelling tool to the deploy of the lastest ma-
chine learning systems. In this book, we hope to give a gentle introduction
to the core methods for people with some level of quantitative background.
The book starts with the origins of RLHF – both in recent literature and
in a convergence of disparate fields of science in economics, philosophy,
and optimal control. We then set the stage with definitions, problem for-
mulation, data collection, and other common math used in the literature.
We detail the detail the popular algorithms and future frontiers of RLHF.

Contents
1 Constitutional AI 3

2 Direct Alignment Algorithms 3

3 Evaluation 3

4 Instruction Tuning 3

5 Introduction 3
5.1 First: Images . 3
5.2 Second: Tables . 3
5.3 Third: Equations . 3
5.4 Fourth: Cross references . 4

6 Over Optimization 4

7 Policy Gradient Algorithms 4
7.1 Policy Gradient Algorithms . 5

7.1.1 Vanilla Policy Gradient 5
7.1.2 Reinforce . 5

1

7.1.3 Proximal Policy Optimization 5
7.2 Computing Policy Gradients with a Language Model 5
7.3 Implementation Tricks . 5

8 Preference Data 5

9 Regularization 5
9.1 KL Distances . 6

9.1.1 Reference Policy . 6
9.1.2 Reference Dataset . 6

9.2 Likelihood Penalty . 6
9.3 Reward Bonuses . 6
9.4 Margin Losses . 6

10 Rejection Sampling 6
10.1 Related works . 6
10.2 Training Process . 7

10.2.1 Generating Completions 7
10.2.2 Selecting Top-N Completions 8
10.2.3 Fine-tuning . 10
10.2.4 Details . 10

10.3 Related: Best-of-N Sampling . 11

11 Key Related Works 11
11.1 Early RL on Preferences . 12
11.2 RLHP on Language Models . 12
11.3 Pre Modern Models . 12
11.4 ChatGPT . 12

12 Reward Modeling 12

13 Problem Setup 12
13.1 ML Definitions . 12
13.2 NLP Definitions . 12
13.3 RL Definitions . 13

14 Synthetic Data 14

Bibliography 14

2

1 Constitutional AI

2 Direct Alignment Algorithms

3 Evaluation

4 Instruction Tuning

5 Introduction
This is the first paragraph of the introduction chapter. This is a test of citing
[1].

5.1 First: Images
This is the first subsection. Please, admire the gloriousnes of this seagull:

A cool seagull.

Figure 1: A cool seagull.

A bigger seagull:

A cool big seagull.

Figure 2: A cool big seagull.

5.2 Second: Tables
This is the second subsection.

Please, check First: Images subsection.

Please, check this subsection.

Table 1: This is an example table.

Index Name
0 AAA
1 BBB
… …

5.3 Third: Equations
Formula example: 𝜇 = ∑𝑁

𝑖=0
𝑥𝑖
𝑁

3

Now, full size:

𝜇 =
𝑁

∑
𝑖=0

𝑥𝑖
𝑁

And a code sample:

def hello_world
puts "hello world!"

end

hello_world

Check these unicode characters: ǽß¢ð€đŋ�

5.4 Fourth: Cross references
These cross references are disabled by default. To enable them, check the Cross
references section on the README.md file.

Here’s a list of cross references:

• Check fig. 3.
• Check tbl. 2.
• Check eq. 1.

A cool seagull

Figure 3: A cool seagull

𝑦 = 𝑚𝑥 + 𝑏 (1)

Table 2: This is an example table.

Index Name
0 AAA
1 BBB
… …

6 Over Optimization

7 Policy Gradient Algorithms
The algorithms that popularized RLHF for language models were policy-
gradient reinforcement learning algoritms. These algorithms, such as PPO and

4

https://github.com/wikiti/pandoc-book-template#cross-references
https://github.com/wikiti/pandoc-book-template#cross-references

Reinforce, use recently generated samples to update their model rather than
storing scores in a replay buffer. In this section we will cover the fundamentals
of the policy gradient algorithms and how they are used in the modern RLHF
framework.

For definitions of symbols, see the problem setup chapter.

7.1 Policy Gradient Algorithms
The core of policy gradient algorithms is computing the gradient with respect
to the finite time expected return over the current policy. With this expected
return, 𝐽 , the gradient can be computed as follows, where 𝛼 is the learning rate:

𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜃)

7.1.1 Vanilla Policy Gradient

The vanilla policy gradient implementation optimizes the following expectation:

∇𝜃𝐽(𝜋𝜃) = 𝔼𝜏 [
𝑇

∑
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝜋𝜃(𝑠𝑡, 𝑎𝑡)]

7.1.2 Reinforce

Reinforce is a specific implementation of vanilla policy gradient that uses a
Monte Carlo estimator of the gradient.

7.1.3 Proximal Policy Optimization

7.2 Computing Policy Gradients with a Language Model
7.3 Implementation Tricks

• Only score a response with a reward model with the eos_token is gener-
ated, otherwise the response is truncated.

TODO. Cite: https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

8 Preference Data

9 Regularization
Throughout the RLHF optimization, many regularization steps are used to pre-
vent over-optimization

5

https://rlhfbook.com/c/setup.html

9.1 KL Distances
9.1.1 Reference Policy

9.1.2 Reference Dataset

9.2 Likelihood Penalty
• https://arxiv.org/abs/2404.19733 on DPO loss

9.3 Reward Bonuses
• Nemotron

9.4 Margin Losses
• Llama 2
• Rebel
• Reward Preference Optimization (Nemotron)

10 Rejection Sampling
Rejection Sampling (RS) is a popular and simple baseline for performing pref-
erence fine-tuning. Rejection sampling operates by curating new candidate in-
structions, filtering them based on a trained reward model, and then fine-tuning
the original model only on the top completions.

The name originates from computational statistics [2], where one wishes to
sample from a complex distribution, but does not have a direct method to do
so. To alleviate this, one samples from a simpler to model distribution and uses
a heuristic to check if the sample is permissible. With language models, the
target distribution is high-quality answers to instructions, the filter is a reward
model, and the sampling distribution is the current model.

10.1 Related works
Many prominent RLHF and preference fine-tuning papers have used rejection
sampling as a baseling, but a canonical implementation and documentation does
not exist

WebGPT [3], Anthropic’s Helpful and Harmless agent[4], OpenAI’s popular
paper on process reward models [5], Llama 2 Chat models [6], and other seminal
works all use this baseline.

6

10.2 Training Process
A visual overview of the rejection sampling process is included below.

10.2.1 Generating Completions

Let’s define a set of 𝑀 prompts as a vector:

𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑀]

These prompts can come from many sources, but most popularly they come
from the instruction training set.

For each prompt 𝑥𝑖, we generate 𝑁 completions. We can represent this as a
matrix:

𝑌 =
⎡
⎢⎢
⎣

𝑦1,1 𝑦1,2 ⋯ 𝑦1,𝑁
𝑦2,1 𝑦2,2 ⋯ 𝑦2,𝑁

⋮ ⋮ ⋱ ⋮
𝑦𝑀,1 𝑦𝑀,2 ⋯ 𝑦𝑀,𝑁

⎤
⎥⎥
⎦

where 𝑦𝑖,𝑗 represents the 𝑗-th completion for the 𝑖-th prompt. Now, we pass all
of these prompt-completion pairs through a reward model, to get a matrix of
rewards. We’ll represent the rewards as a matrix R:

𝑅 =
⎡
⎢⎢
⎣

𝑟1,1 𝑟1,2 ⋯ 𝑟1,𝑁
𝑟2,1 𝑟2,2 ⋯ 𝑟2,𝑁

⋮ ⋮ ⋱ ⋮
𝑟𝑀,1 𝑟𝑀,2 ⋯ 𝑟𝑀,𝑁

⎤
⎥⎥
⎦

Each reward 𝑟𝑖,𝑗 is computed by passing the completion 𝑦𝑖,𝑗 and its correspond-
ing prompt 𝑥𝑖 through a reward model ℛ:

𝑟𝑖,𝑗 = ℛ(𝑦𝑖,𝑗|𝑥𝑖)

7

10.2.2 Selecting Top-N Completions

There are multiple methods to select the top completions to train on.

To formalize the process of selecting the best completions based on our reward
matrix, we can define a selection function 𝑆 that operates on the reward matrix
𝑅.

10.2.2.1 Top Per Prompt The first potential selection function takes the
max per prompt.

𝑆(𝑅) = [arg max
𝑗

𝑟1,𝑗, arg max
𝑗

𝑟2,𝑗, ..., arg max
𝑗

𝑟𝑀,𝑗]

This function 𝑆 returns a vector of indices, where each index corresponds to the
column with the maximum reward for each row in 𝑅. We can then use these
indices to select our chosen completions:

𝑌𝑐ℎ𝑜𝑠𝑒𝑛 = [𝑦1,𝑆(𝑅)1
, 𝑦2,𝑆(𝑅)2

, ..., 𝑦𝑀,𝑆(𝑅)𝑀
]

10.2.2.2 Top Overall Prompts Alternatively, we can select the top K
prompt-completion pairs from the entire set. First, let’s flatten our reward
matrix R into a single vector:

𝑅𝑓𝑙𝑎𝑡 = [𝑟1,1, 𝑟1,2, ..., 𝑟1,𝑁 , 𝑟2,1, 𝑟2,2, ..., 𝑟2,𝑁 , ..., 𝑟𝑀,1, 𝑟𝑀,2, ..., 𝑟𝑀,𝑁]

This 𝑅𝑓𝑙𝑎𝑡 vector has length 𝑀 × 𝑁 , where M is the number of prompts and N
is the number of completions per prompt.

Now, we can define a selection function 𝑆𝐾 that selects the indices of the K
highest values in 𝑅𝑓𝑙𝑎𝑡:

𝑆𝐾(𝑅𝑓𝑙𝑎𝑡) = argsort(𝑅𝑓𝑙𝑎𝑡)[−𝐾 ∶]

where argsort returns the indices that would sort the array in ascending order,
and we take the last K indices to get the K highest values.

To get our selected completions, we need to map these flattened indices back to
our original completion matrix Y. We simply index the 𝑅𝑓𝑙𝑎𝑡 vector to get our
completions.

10.2.2.3 Selection Example Consider the case where we have the following
situation, with 5 prompts and 4 completions. We will show two ways of selecting
the completions based on reward.

8

𝑅 =
⎡
⎢
⎢
⎢
⎣

0.7 0.3 0.5 0.2
0.4 0.8 0.6 0.5
0.9 0.3 0.4 0.7
0.2 0.5 0.8 0.6
0.5 0.4 0.3 0.6

⎤
⎥
⎥
⎥
⎦

First, per prompt. Intuitively, we can highlight the reward matrix as follows:

𝑅 =
⎡
⎢
⎢
⎢
⎣

0.7 0.3 0.5 0.2
0.4 0.8 0.6 0.5
0.9 0.3 0.4 0.7
0.2 0.5 0.8 0.6
0.5 0.4 0.3 0.6

⎤
⎥
⎥
⎥
⎦

Using the argmax method, we select the best completion for each prompt:

𝑆(𝑅) = [arg max
𝑗

𝑟𝑖,𝑗 for 𝑖 ∈ [1, 4]]

𝑆(𝑅) = [1, 2, 1, 3, 4]

This means we would select:

• For prompt 1: completion 1 (reward 0.7)
• For prompt 2: completion 2 (reward 0.8)
• For prompt 3: completion 1 (reward 0.9)
• For prompt 4: completion 3 (reward 0.8)
• For prompt 5: completion 4 (reward 0.6)

Now, best overall. Let’s highlight the top 5 overall completion pairs.

𝑅 =
⎡
⎢
⎢
⎢
⎣

0.7 0.3 0.5 0.2
0.4 0.8 0.6 0.5
0.9 0.3 0.4 0.7
0.2 0.5 0.8 0.6
0.5 0.4 0.3 0.6

⎤
⎥
⎥
⎥
⎦

First, we flatten the reward matrix:

𝑅𝑓𝑙𝑎𝑡 = [0.7, 0.3, 0.5, 0.2, 0.4, 0.8, 0.6, 0.5, 0.9, 0.3, 0.4, 0.7, 0.2, 0.5, 0.8, 0.6, 0.5, 0.4, 0.3, 0.6]

Now, we select the indices of the 5 highest values:

𝑆5(𝑅𝑓𝑙𝑎𝑡) = [8, 5, 14, 0, 19]

9

Mapping these back to our original matrix:

• Index 8 → prompt 3, completion 1 (reward 0.9)
• Index 5 → prompt 2, completion 2 (reward 0.8)
• Index 14 → prompt 4, completion 3 (reward 0.8)
• Index 0 → prompt 1, completion 1 (reward 0.7)
• Index 19 → prompt 3, completion 4 (reward 0.7)

10.2.2.4 Implementation Example Here is a code snippet showing how
the selection methods could be implemented.

import numpy as np

x = np.random.randint(10, size=10)
print(f"{x=}")
sorted_indices = np.argsort(x)
x_sorted = x[sorted_indices]
print(f"{x_sorted=}")

first way to recover the original array
i_rev = np.zeros(10, dtype=int)
i_rev[sorted_indices] = np.arange(10)
np.allclose(x, x_sorted[i_rev])

second way to recover the original array
np.allclose(x, x_sorted[np.argsort(sorted_indices)])

10.2.3 Fine-tuning

With the selected completions, you then perform standard instruction fine-
tuning on the current rendition of the model. More details can be found in
the chapter on instruction tuning.

10.2.4 Details

Implementation details for rejection sampling are relatively sparse. The core
hyperparameters for performing this training are very intuitive:

• Sampling parameters: Rejection sampling is directly dependent on the
completions received from the model. Common settings for RS include
tempetures above zero, e.g. between 0.7 and 1.0, with other modifications
to paramters such as top-p or top-k sampling.

• Completions per prompt: Successful implementations of rejection sam-
pling have included 10 to 30 or more completions for each prompt. Using
too few completions will make training biased and or noisy.

• Instruction tuning details: No clear training details for the instruction
tuning during RS have been released. It is likely that they use slightly
different settings than the initial instruction tuning phase of the model.

10

https://rlhfbook.com/c/instructions.html

• Hetergenous model generations: Some implementations of rejection
sampling include generations from multiple models rather than just the
current model that is going to be trained. Best practices on how to do
this are not established.

• Reward model training: The reward model used will heavily impact
the final result. For more resources on reward model training, see the
relevant chapter.

10.2.4.1 Implementation Tricks

• When doing batch reward model inference, you can sort the tokenized
completions by length so that the batches are of similar lengths. This
eliminates the need to run inference on as many padding tokens and will
improve throughput in exchange for minor implementation complexity.

10.3 Related: Best-of-N Sampling
Best-of-N (BoN) sampling is often included as a baseline relative to RLHF
methods. It is important to remember that BoN does not modify the underlying
model, but is a sampling technique. For this matter, comparisons for BoN
sampling to online training methods, such as PPO, is still valid in some contexts.
For example, you can still measure the KL distance when running BoN sampling
relative to any other policy.

Here, we will show that when using simple BoN sampling over one prompt, both
selection criteria shown above are equivalent.

Let R be a reward vector for our single prompt with N completions:

𝑅 = [𝑟1, 𝑟2, ..., 𝑟𝑁]

Where 𝑟𝑗 represents the reward for the j-th completion.

Using the argmax method, we select the best completion for the prompt:

𝑆(𝑅) = arg max
𝑗∈[1,𝑁]

𝑟𝑗

Using the Top-K method is normally done with Top-1, reducing to the same
method.

11 Key Related Works
In this chapter we detail the key papers and projects that got the RLHF field to
where it is today. This is not intended to be a comprehensive review on RLHF
and the related fields, but rather a starting point and retelling of how we got to
today.

11

https://rhlfbook.com/reward-models.html

11.1 Early RL on Preferences
Christriano et al etc

11.2 RLHP on Language Models
Learning to summarize, first work on language models (zieglar et al)

11.3 Pre Modern Models
InstructGPT, WebgGPT, Sparrow, Etc

11.4 ChatGPT

12 Reward Modeling

13 Problem Setup
This chapter includes all the definitions, symbols, and operatings frequently
used in the RLHF process.

13.1 ML Definitions
• Kullback-Leibler (KL) divergence (𝐷𝐾𝐿(𝑃 ||𝑄)), also known as KL

divergence, is a measure of the difference between two probability distri-
butions. For discrete probability distributions 𝑃 and 𝑄 defined on the
same probability space 𝒳, the KL distance from 𝑄 to 𝑃 is defined as:

𝐷𝐾𝐿(𝑃 ||𝑄) = ∑
𝑥∈𝒳

𝑃(𝑥) log (𝑃(𝑥)
𝑄(𝑥))

13.2 NLP Definitions
• Prompt (𝑥): The input text given to a language model to generate a

response or completion.

• Completion (𝑦): The output text generated by a language model in
response to a prompt. Often the completion is denoted as 𝑦|𝑥.

• Chosen Completion (𝑦𝑐): The completion that is selected or preferred
over other alternatives, often denoted as 𝑦𝑐ℎ𝑜𝑠𝑒𝑛.

• Preference Relation (≻): A symbol indicating that one completion is
preferred over another, e.g., 𝑦𝑐ℎ𝑜𝑠𝑒𝑛 ≻ 𝑦𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑.

• Policy (𝜋): A probability distribution over possible completions, param-
eterized by 𝜃: 𝜋𝜃(𝑦|𝑥).

12

13.3 RL Definitions
• Reward (𝑟): A scalar value indicating the desirability of an action or

state, typically denoted as 𝑟.

• Action (𝑎): A decision or move made by an agent in an environment,
often represented as 𝑎 ∈ 𝐴, where 𝐴 is the set of possible actions.

• State (𝑠): The current configuration or situation of the environment,
usually denoted as 𝑠 ∈ 𝑆, where 𝑆 is the state space.

• Trajectory (𝜏): A trajectory � is a sequence of states, actions, and re-
wards experienced by an agent: 𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, ..., 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇).

• Trajectory Distribution ((𝜏|𝜋)): The probability of a trajectory under
policy 𝜋 is 𝑃(𝜏|𝜋) = 𝑝(𝑠0) ∏𝑇

𝑡=0 𝜋(𝑎𝑡|𝑠𝑡)𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), where 𝑝(𝑠0) is the
initial state distribution and 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is the transition probability.

• Policy (𝜋): In RL, a policy is a strategy or rule that the agent follows to
decide which action to take in a given state: 𝜋(𝑎|𝑠).

• Value Function (𝑉): A function that estimates the expected cumulative
reward from a given state: 𝑉 (𝑠) = 𝔼[∑∞

𝑡=0 𝛾𝑡𝑟𝑡|𝑠0 = 𝑠].
• Q-Function (𝑄): A function that estimates the expected cu-

mulative reward from taking a specific action in a given state:
𝑄(𝑠, 𝑎) = 𝔼[∑∞

𝑡=0 𝛾𝑡𝑟𝑡|𝑠0 = 𝑠, 𝑎0 = 𝑎].
• Advantage Function (𝐴): The advantage function 𝐴(𝑠, 𝑎) quantifies

the relative benefit of taking action 𝑎 in state 𝑠 compared to the average
action. It’s defined as 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉 (𝑠). Advantage functions (and
value functions) can depend on a specific policy, 𝐴𝜋(𝑠, 𝑎).

• Expectation of Reward Optimization: The primary goal in RL, which
involves maximizing the expected cumulative reward:

max𝜃 𝔼𝑠∼𝜌𝜋,𝑎∼𝜋𝜃
[∑∞

𝑡=0 𝛾𝑡𝑟𝑡]
where 𝜌𝜋 is the state distribution under policy 𝜋, and 𝛾 is the discount
factor.

• Finite Horizon Reward (𝐽(𝜋𝜃)): The expected finite-horizon undis-
counted return of the policy 𝜋𝜃, parameterized by 𝜃 is defined as: 𝐽(𝜋𝜃) =
𝐸𝜏 𝜋𝜃[∑𝑇

𝑡 = 0𝑟𝑡] where 𝜏 𝜋𝜃 denotes trajectories sampled by following
policy 𝜋𝜃 and 𝑇 is the finite horizon.

13

14 Synthetic Data

Bibliography
[1] N. Lambert, T. K. Gilbert, and T. Zick, “Entangled preferences: The

history and risks of reinforcement learning and human feedback,” arXiv
preprint arXiv:2310.13595, 2023.

[2] W. R. Gilks and P. Wild, “Adaptive rejection sampling for gibbs sam-
pling,” Journal of the Royal Statistical Society: Series C (Applied Statis-
tics), vol. 41, no. 2, pp. 337–348, 1992.

[3] R. Nakano et al., “Webgpt: Browser-assisted question-answering with
human feedback,” arXiv preprint arXiv:2112.09332, 2021.

[4] Y. Bai et al., “Training a helpful and harmless assistant with reinforce-
ment learning from human feedback,” arXiv preprint arXiv:2204.05862,
2022.

[5] H. Lightman et al., “Let’s verify step by step,” arXiv preprint
arXiv:2305.20050, 2023.

[6] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat mod-
els,” arXiv preprint arXiv:2307.09288, 2023.

14

	Constitutional AI
	Direct Alignment Algorithms
	Evaluation
	Instruction Tuning
	Introduction
	First: Images
	Second: Tables
	Third: Equations
	Fourth: Cross references

	Over Optimization
	Policy Gradient Algorithms
	Policy Gradient Algorithms
	Vanilla Policy Gradient
	Reinforce
	Proximal Policy Optimization

	Computing Policy Gradients with a Language Model
	Implementation Tricks

	Preference Data
	Regularization
	KL Distances
	Reference Policy
	Reference Dataset

	Likelihood Penalty
	Reward Bonuses
	Margin Losses

	Rejection Sampling
	Related works
	Training Process
	Generating Completions
	Selecting Top-N Completions
	Fine-tuning
	Details

	Related: Best-of-N Sampling

	Key Related Works
	Early RL on Preferences
	RLHP on Language Models
	Pre Modern Models
	ChatGPT

	Reward Modeling
	Problem Setup
	ML Definitions
	NLP Definitions
	RL Definitions

	Synthetic Data
	Bibliography

